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A New Method for Obtaining the Shape
Sensitivities of Planar Microstrip
Structures by a Full-Wave Analysis
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Abstract— We present the principles and the derivation of
a new mixed potential integral equation for the derivative of
the surface current with respect to a geometrical parameter
for planar microstrip structures embedded in a multilayered
substrate. This new integral equation is solved together with
the original integral equation with the method of moments by
using the same set of test and basis functions. Expressions for the
matrix elements as a function of the basis and test functions are
given. From the geometrical derivatives of the surface currents,
geometrical derivatives of the S-parameters are obtained. In the
examples a geometrical parameter is swept over some interval,
and the derivative, obtained with the new integral equation, is
compared with estimates calculated by using finite differences.
Very good agreement is found between these estimates.

1. INTRODUCTION

ONSIDERABLE research has been devoted to the full-

wave analysis of planar microstrip structures as can be
seen from the numerous publications [1]-[4] on this topic.
Such a rigorous analysis is very often based on an integral
equation formulation, typically solved with the method of
moments (MoM). In this paper, we apply the MoM to the
mixed potential integral equation (MPIE) formulation of the
problem. This problem formulation and solution method is
the most efficient for arbitrarily shaped planar geometries
embedded in a laterally infinitely extending, stratified medium
because only the conducting surfaces are meshed up. From
the surface currents on the microstrip, equivalent scattering
parameters of the structure are derived.

Recently attention shifted to the inverse problem: the geo-
metrical design of components based on a full-wave electro-
magnetic simulation [5], [6]. This design can be automated
by the application of powerful optimization methods. Such an
optimization, for instance, has already been applied for planar
devices with the FEM as analysis method [7].

Efficient local optimization techniques rely heavily on the
gradient of the objective function [8]. In a general full-
wave electromagnetic problem these first derivatives with
respect to the geometrical parameters are not readily available.
Therefore, one usually resorts to the numerical but inefficient
method of taking finite differences. For a circuit with M

Manuscript received February 20, 1995; revised November 12, 1995.

The authors are with Electromagnetics Group, Department of Information
Technology (INTEC), University of Gent, St. Pietersnieuwstraat 41. 9000
Gent, Belgium.

Publisher Item Identifier S 0018-9480(96)01448-2.

geometrical design parameters, a forward or backward finite
difference estimate requires at least M + 1 full-wave analyses
of the entire problem. Other methods for obtaining this gra-
dient information consist in fitting or interpolating quadratic
polynomials to the goal or error function. This involves several
repeated analyses of slightly perturbed problems. In [9], e.g.,
an efficient interpolation method is described for interpolating
and approximating the error surface. Gradient information
of the objective function is reconstructed by taking partial
derivatives of this interpolant, however with a certain loss
of accuracy. The approximation of highly nonlinear response
curves stirred also considerable interest in neural networks
as function approximators [10], [11]. Other techniques [12]
exploit the decrease in simulation time when a coarse grid
or mesh is used to simulate the circuit. All these techniques
have their own merit, but they basically work at the outside
of the electromagnetic simulator and are in fact applicable to
whatever computationally intensive simulation.

A more problem-oriented approach is described in [13] and
[14] for the full-wave optimization of waveguide filters. The
key assumption in this work is that simple, analytically known,
expressions exist for the admittance matrix of subsections of
the waveguide as a function of the geometrical parameters. For
an integral equation based full-wave analysis of even simple
microstrip discontinuities, this assumption breaks down: no
simple analytical expressions exist for the impedance matrix
elements. Another important difference is that in integral
equation techniques the geometry is meshed, whereas in [13]
no meshing of the geometry is needed.

The present paper presents the principles as well as a
method for calculating the derivative of the S-parameter with
respect to an arbitrary geometrical parameter using the MPIE
as a full-wave analysis method. This derivative or shape
sensitivity is obtained as a byproduct of the electromagnetic
simulation. Through the examples, it will be demonstrated that
this derivative is superior with respect to a finite difference
estimate. The method has been shown to be valid in the
electrostatic case of planar structures [15], [16] and this work is
an extension to the full-wave analysis of planar structures. We
confine ourselves to the case of microstrip structures analysed
with a MPIE but the principles proposed here are directly
applicable to, e.g., the analysis of the same structure with an
electrical field integral equation (EFIE) or extendible to the
analysis of a hybrid structure with microstrip and slot type
discontinuities.
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Fig. 1. Example geometry of a planar microstrip structure embedded 1n a
multilayered substrate.

II. DERIVATION OF AN INTEGRAL EQUATION FOR THE
ToTAL GEOMETRICAL DERIVATIVE OF THE CURRENT

A. Geometry and Geomertrical Parameters of the Problem

The general geometry of a planar microstrip circuit, em-
bedded in a multilayered substrate is depicted in Fig. 1. The
substrate consists of an arbritrary number of layers, stacked
in the z-direction. The layers extend to infinity in z- and y-
direction. A metallic ground plane and/or top plane can be
present. The microstrip circuit consists of thin metallization
surfaces of arbitrary shape. The thickness of the metalliza-
tion is assumed to be negligible in comparison with the
layer thicknesses. Losses are modeled by taking a surface
impedance of the conductors into consideration. Different
types of geometrical parameters appear in this multilayered
planar microstrip structure: thicknesses of the substrate layers
(such as h; and hy), distances between metallization surfaces
(e.g. d1) and geometrical parameters pertaining to the surface
itself like width or length (e.g.. Ly. Lo or wy). We confine
ourselves to the last two types of geometrical parameters.
Derivatives with respect to layer thicknesses will be the subject
of a forthcoming paper.

B. Integral Equations

The relation between the incident tangential electrical field
and the surface current on the microstrip is given by the
well-known MPIE [3], [4], [17]

E™(7) = Z,J(7) + /

Se¢

GA(T | 7)J(F)dS

-V / GY(F |7V . J(v"’)dsl (1
Se¢
where
Einc(7) the tangential component of the
- incident electrical field
J(7) the unknown surface current

distribution
the electrical or magnetic Green’s
function kernel
Z, the surface impedance of the
conductor.

This integral equation follows directly from the representa-
tion of the electrical field as a function of a magnetic vector
potential and an electrical scalar potential and the application

GY(F | #).GA(r | 7)

of the zero boundary condition for the total electrical field on
the conducting surface S¢. For simplicity, we assume that &
represents a single geometrical parameter which modifies the
shape of the surface S¢ in the plane of the surface. Extension to
multiple geometrical parameters is straightforward. The total
derivative of the surface current with respect to the geometrical
parameter £ is given by

- 0

Te(r) = g J(F) + (8- V) J(7) )

Ay

with ¢ = dr/dé. We call & a velocity vector. This vector
always lies in the plane of the circuit (i.e., a plane parallel
to the (r,y) plane) and describes how an arbitrary position
coordinate of the metallization surface changes with £. The
total derivative consists of two parts: the first part describes
the dependence of the surface carrent on the geometrical
parameter itself, and the second part describes the change in
current as a consequence of the change in position coordinates.
The total derivative of the surface current with respect to the
geometrical parameter satisfies the following integral equation

o —. .
_ElIlC + (1—} . V>E1HC

73
= Z.Je + / GHr | ) J.dS
J S
v [ e ey Jg)d/s'}
Se
+ [ V@ = 5)GAF | )T dS
- Sﬁ
ﬁv{ @ = 0@ [ PN T)
Se
LGV (| )T V(T )
ﬁa‘ur®V’uf-7w%w}
+ (Vo) ¥ et | 7V J’dS’]. ©)
Se

This new integral equation is obtained by applying the flux-
transport theorem on the MPIE (1). For a full derivation of
this integral equation. the reader is referred to Appendix A.
We denote the explicit dependence of the velocity and surface
current on the excitation position vector with the following
notations: ¥ = o(r’) and J' = J(7’). The first three terms on
the right-hand side of (3) are similar to the right-hand side of
(1) but with the unknown .J{ (2) replacing .J, the next two
terms are similar to the second and third term in (1) but in
these terms a different “modified” kernel appears of the form
V(@ - 0)GY (P | )] or V- [(8 — 9)GA(F | 7)]. The last
three terms stem from the integro-differential character of (1).
We will use the following notations to denote the modified
kernels

=
—
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V(@ -GV (7| 7))
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III. SOLUTION OF THE INTEGRAL EQUATIONS
WITH THE METHOD OF MOMENTS

The two integral (1) and (3) will be solved with the classical
method of moments. Therefore, the surface current is expanded
in a sum of NV basis functions, denoted by B;(7)

N
J = Z I,B,(7) 5)
7=1

and after testing with N test functions T,(7) the following
system of linear equations from (1) is obtained

sz = Z’le] (6)

where ]
ZzJ:Zs/STl()B(T)dS_i—L ()
-/GA(MF)B( "\dS'dS
S

—/Ti(f)-v GV(7 | #)V' - B;(7)dS'dS (7)
S S

V, = /S T.(7) - E™(7)dsS. ®)

For simplicity, we will omit the subscript £ of S¢ from now
on. The solution of the surface current can be found by solving
the (6). To solve the second integral equation, we expand the
unknown jé over the same set of basis functions

N
T =Y I:By(F) 9)
j=1

and substitute the solution of (1), i.e., the approximate surface
current distribution (5) in (3). After testing with the same test
functions, we again obtain a system of linear equations in the

unknowns If-
M, - W,;I, = 7,1} (10)

where

W, = / / RA(7 | 7)B;(7)dS'dS

o s{ oo

GV(T | 7)B,(7)(V (V' - 7))
~GY (7 | 7)Y - [(By(7). 9] dS’}dS

#1090 9[ [ 6 19 By as | as

(11)
M= | e

(12)

The same impedance matrix Z,, stands before the un-
knowns If, which is direct consequence of using the same
set of basis functions and test functions. If we solve for
the surface currents by a LU-decomposition of the system
matrix [Z,,] then the solution of the geometrical derivative

: [dE +(7- ?)Einc} ds.

If. only needs N2 additional computations where N is the
number of unknowns. No assumptions have yet been made
concerning the nature of basis and test functions: the method
can be applied with subsectional or full domain basis funtions,
one can choose between the Galerkin solution or a scheme
using rooftop functions in conjunction with pointmatching.
The only restriction for a computationally efficient method
is that the same set of basis and test functions is used for both
integral equations. The introduction of the numerical method
of moment solution of the surface current implicates a certain
error for the geometrical derivative. For a discussion of this
approximation and its consequences, we refer the reader to
[15].

IV. DERIVATION OF THE MATRIX ELEMENTS

In this section we derive simple expressions for the Z-
and W-matrix elements ((7) and (11)) in terms of basis and
test functions by eliminating the gradient vectors before the
mtegral sign as it is difficult to handle these numerically.
We assume that the geometry is meshed up in a mesh of
rectangular or triangular cells and that the test and basis
functions used are subsectional.

A. Derivation of the Z-Matrix Elements

By using Green’s theorem, the elements of the Z-matrix
can be rewritten as

%) = 7. /5 To(7) - B, (7)dS + /5 ()

-/GA(f|f’)B](f’)dS’dS
5
- ]{ T,(AGY (7 | #)V' - B,(7) - adl
as
+/<7-T /GV (7| 7)V' - B;(7)dS'dS (13)
s
where 7 is the outside oriented normal unit vector along the
boundary 05 of the surface S. The third term, i.e., the integral
over J5, disappears because the normal component of the
surface current is continuous across two adjacent cells. At
the boundary of the sutface S, the normal component of the

current is zero. Hence, the impedance matrix elements reduce
to

Zz] = Zs/ Tz(F) B](f)d’s’
S

+[9E(T)-/GA(T|T'B

v - T (7 V’r‘ " BL(F i
+ [ V1) [ @179 Byis'as. (1)

7)dS'dS

The matrix elements Z;, also appear before the unknowns If
in (10). The expression for the matrix elements reduces to (14)
if we force the normal component of the total derivative of
the surface current to be continuous across two adjacent cells.
The normal component of the total derivative of the surface
current at the boundary of S is usually zero. This can be seen
as follows: we denote the surface current at the boundary 0S¢
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Fig. 2. Condition at the boundary of the surface during parameter variation.
by J(7,&). Then. J(7 + A7, & + AE) is the surface current at
the boundary 95¢a¢ for a perturbed value of £. Remark that
when perturbing £ the position 7 on the boundaty changes to
7 + Ar. If we consider the normal component of the surface
current, one can state that for every A¢ (see Fig. 2)

J(F+ AT, £ 4+ AE) - a7 + AF, £+ AL) — J(7,€) -
A¢

n(r,§)

=0 (15)

because before and after shape variation the normal component
of the surface current is zero. If the unit normal vector
stays constant during the paramefer variation, i.e. i(7,¢) =
(7 + A7, € + AE) for all AE, then

J(F+ AT &+ A — J(1,6)

Y (7. &) =0 (16)
or when taking the limit
J(F)+ (5 - V)J(F)| -a(r, &) = 0. (17)

o0&’
Hence one can conclude that in (10) the expression for the 7,
reduces to (14), on the condition that the normal unit vector
stays the same during parameter variation. This will be the
case taking into consideration the assumptions which will be
made in the following Section IV-B.

B. Derivation of the W-Matrix Elements

Following the same method. we will try to eliminate the
gradient vectors before the integral sign in (11). To simplify
(11), we make the tollowing basic assumption: the velocity
vector is a piecewise continuous vector field with support on
S. In each part of S (this could be in each cell), the velocity
vector can be written in the standard form

7= loew + Boy + oltte + [0y + By +ylu,  (18)

where %, and 4, are the unit vectors in x- and y-direction.
Parts of the surface S can only undergo linear transforma-
tions: expansion. contraction or translation, in other words all
deformations where the congruency with the original surface is
maintained are admissible. Non-linear deformations however
can not be handled through this standard form. This basic
assumption allows us to considerably simplify the integral
(3) and the matrix elements in (11) without too severely

restricting the generality of possible modifications of the shape
of the surface. As a consequence of (18), the normal unit
vector 7i(7, &) will also remain constant during deformation.
automatically leading to (17).

As a direct consequence of this basic assumption, the term
in (11) with V/(V’ - v’) disappears because this factor is zero
on the entire surface.

The remaining terms of the W-matrix elements

_ / () - v{/ RY(r | #)S" B,(r') — G (7 | #)¥"
J& S

(B, () - 5] dS’}dS (19)

and

/Tl(r)-(m)-v{/ G"(T|r’)vBJ(r’)ds’}ds (20)
S S

will be handled separately. By applying Green’s theorem to
(19), we get

—]4 Tz(f')-/R"('F|f’)?"BJ(f’)ds’ﬁdz
aS S
+f 1oy [
oS

S

(B, (r) - V)')dS"ndl
v - T (7 Vie | 1\ . B
+/SV TLU)/SR (7 | #)V' - B,(r')dS'dS
_ /Sv . TZ(F)/SGV(,F | PO [(B](T—/) . ?/)1—}/](15/(15.
(21)

The contour integrals are taken along the boundary of the
surface S. Because the normal component of the surface
currents [, are continuous across two cell boundaries, only
two terms of (19) remain

/Vim/HfWWW’RW%GWHWV
JS JS
3

B, () - ¥)]}dS’ dS. (22)

We can rewrite the term V' - [(B;(7') - V/)#’] by substituting
the canonical form for the velocity 7 (18)

V(B () - V)]
0B;, oB;, 0B;, 0B;
T 8.;’ 1 ox’ oy dy’ 0 d?w (23)

We also substitute (18) into (20) and if we denote the “‘poten-
tial” due to a single basis function B,(7') by ¢,(F)

¢;(r) = / GY (7| #)V'- B, (7)dS’ (24)
s
then
VO] - Ve, (7)
- |: ()d¢J+ yadqu] z+|:ﬁ.’ta‘¢J+ﬁlja¢J:| l/

(25)
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Denoting the test function 7,(7) by Tiptiy + Toyily. (20)
becomes

|20 (9)- ad
0¢;

A CE R

a¢j 8¢J
+Ty (ﬂw% + By ’5};)] s (26)
0
Z/S [a—m(aszwQﬁ] +ﬂa:Tiiy¢g)
d

+ 8_y(ayTi$¢j + By Tiy¢5)

aTm 8Tu:
—%3;@“%5*%

oT; T;
— By yqs] ﬂy 3y —g,|dS. (27)

Again using Green’s theorem, the first part of (27) can be
rewritten as

¢g4%%@+meM+mﬂm+m%@m

Or if we define a “modified” test function as “
0.(F) = [ayTox + ByTiyltle + [0aTow + BoeTogliiy  (29)

then (28) is equal to
fé i / GV(7 | #)V' - By(F)dS'Adl.  (30)

The second part of (27) is nothing else than the expansion of

V- (L) - V)
?)6]/SGV(17|7*’)V’

- [9-10

Summarizing, we get the following result for the W -matrix
elements by summation of all contributions

B,(¥)dS'dS. (31)

Wy = [(T6)- [ RAG 1B as'as
+ [T / RY (| #)%" - B, (F)dS'dS
S

S—a"

v.T(x/GVu|)vf
(B (7)) - V)V')dS dS — /S v
w@w»wm/awﬂwwf

+£S®,/SGV( P ) -

. B,(¥)dS'dS

B,(#)adS'dl. (32)

V. CALCULATION OF THE MATRIX ELEMENTS

A. Calculation of the Locally Modified Green’s Function

The original integral kernels GV (7 | #) and GA(7 | ') are
only a function of p = | — 7|. The kernels RV (7 | #) and
RA(7 | #') are functions of 7 and #'. The analytical expression
as a function of p of the original potential kernels (GV (7 | #)
and GA(7 | 7)) for an arbitrarily multilayered medium is not
known. The kernels are expanded in a Laurent series of p
over some p-interval as in [4]

Npow

> ot

k=-1

G¥(p) = 33

with X = A or V. The gradient vector of G (p) with respect
to the excitation coordinates is given by

pow

chxk2‘

k=-1

V'G*(p) = (F (34)

—’f'

Taking into account the form of the velocity vector, we can
write the locally perturbed Green’s function kernels as

R (7| )
=V -VGX(r|r)+ (@
Npow
= (o), +8) Y ot
k=-1
+ {alz' (' — ) +
= Boy(@’ — ) + (72 — )&’ ~ z)
+ayz'(y' —y) + By’ (v — )

-9)-V'-GX(F|7)

Aoy (&' — z) — agz(a’ — 2)

—ayy(y' —y) = Byy(y' — v)
Npow

+( =W -} D ke (39)
k=-1

where the coefficients with/without prime belong to excita-
tion/observation cell. For each part of the surface where the
excitation and observation velocity coincide (7 = ¥'), (35)
simplifies to

Npow
=(ah+By) Y cap
k=—1
+{ag(z' —2)° + (8, + )y —y)(«' —x)

pow

ZkCXkQ

k=—1

+ 8,0y - (36)

From (36) we observe that if k equals —1, the singularity of the
kernel is of the same order as in the original integral equation,
namely a p~! term. As a consequence, weak singular integrals
of the same type as in the Z-matrix elements appear during
calculation of the W-matrix elements.
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B. Calculation of the Matrix Elements

For the basis functions and test functions, the classical
rooftop functions are used. This corresponds with the Galerkin
solution method. Basically the calculation of the matrix el-
ements reduces to the integration of a quadruple integral
over excitation and observation cell of a power of p and a
polynomial function in x, z’. y or ¢’. The integration method
used is the same as in [4].

VI. GEOMETRICAL DERIVATIVE OF THE CURRENT

If no external incident field is present, then the systems of
linear equations reduce to

0=2,1I, (37)

and

0= 2,15 + W, I,. (38)
In order to calculate circuit parameters, like the Y-Z or S-
parameters, port lines are added to the planar structure. At the
end of port line, a source excites the structure. If we group the
current variables corresponding with the end of the port in the
vector Ip and the remaining variables (circuit -+ rest of port
line) in the vector Ig we can rewrite (37) as

0 Zss Zsp ||1ls
—_ 3
ol =17 2] &

with solution

Is = —[Zss] [ Zsplp]. (40)
For the system (38) an analoguous reasoning leads to
0] _[Zss Zsp I§ L [Wss WSP} Is] 4
0 Zps Zpp | |Ip Wps Wep | |Ip}

Because the source is independent of the geometry, Ifj van-
ishes and the solution for If; becomes

I§ = ~Z53WsslIs + Wsplp]. (42)
The same inverse matrix is used as in the previous system,
which means that only N? additional computations are needed
in order to solve for the derivative with respect to a geometrical
parameter.

VII. GEOMETRICAL DERIVATIVE OF THE S-PARAMETERS

The surface density currents at the port or feed lines give
rise to the longitudinal currents at each port. Likewise the
geometrical derivatives of the surface currents can be easily
related to the geometrical derivative of the longitudinal current
at the port line. Voltages at each port line are defined by using a
power-current definition [18] in the following way: the cross
power P, ., injected or reflected at port p, due to a current
excitation at port ¢ (other ports open) is defined as

1 n T*
Ppg= _3/5 Epg- Jp,qu

P

(43)

where E, , is the tangential electrical field at port p, J, , the
corresponding surface current and .S, the port region. Using a
circuit definition, voltages at each port are calculated as

2P,
‘/rlhq = I*pﬂ (44)
Py
where I is the longitudinal current at port p. Because the

applied source current distribution J, 4 is independent of the
geometrical parameters, the derivative of the cross power is
given by

OP, 1 J = =\ 7 7
=g il T (0 V)Epg| - J5 A5 (45)
¢ 2 Js, 5%

To simplify the discussion, we made the assumption that the
port region 5, is independent of the geometrical parameter
£. This means that derivatives with respect to the width of
the port lines cannot be calculated with the method described
above. The derivative of the cross power can also be expressed
as a function of the calculated 7, and the matrix elements W,.
Substituting (45) in the derivative of the circuit definition (44),
derivatives of the port voltages with respect to the geometrical
parameters are obtained as

av;?yq — 2 aPP:q
o€ Iy, 0¢ '

(46)

From the currents, the geometrical derivatives of the currents,
the voltages and the geometrical derivatives of the voltages.
the S-parameters and its geometrical derivatives are easily
obtained.

VIII. NUMERICAL EXAMPLES

The previous theory has been implemented for structures
consisting of rectangular cells where the cell dimension can
be of different size. We emphasize however that the above
theory is not restricted to this type of mesh but could also
be implemented for a mixed mesh of rectangles and triangles,
however with more numerical efforts.

Some numerical examples will be given where a single
geometrical parameter is varied over some interval. As a
reference we will calculate an estimate of the derivative of
the S-parameter obtained by taking finite differences with a
simple four point formula

o —2h) — z—h (r+h)— f(z h

+ O(h%). (47)

To this end the integral (3) must be solved four times, each
time for a different S; surface. This estimate, abbreviated
FDD (finite difference derivative) will be sufficiently accurate
if the step size h is kept small. The derivative, obtained by
solving the integral (3) is called the IED (integral equation
derivative). A comparison between these two estimates is made
by considering the following relative error measure

|F[<%)IED] _F[(%J—)FDD”

P [(%3) eno

Erel - (48)
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where F[-] stands for the real part, the imaginary part, the
phase or the absolute value and where S;; is one of the S-
parameters. A large error can indicate an incorrect IED or a
less accurate FDD. The accuracy of the FDD can be arbitrarily
increased in theory by decreasing the step size, in practice by
using a higher-order formula.

A important issue is still left untouched: if a geometrical
parameter which relates to the surface itself (length, width,
but not the distance between two surfaces) is changed then
the meshing of the structure must be adapted. The manner in
which this is performed is arbitrary and must be specified by
the user: cells can be added in the meshing, some cells can
be expanded or reduced or a combination of both approaches
can be used. In the examples presented below, the mesh of
the entire structure is changed proportionally with the change
of the geometrical parameter. This can be done because all
cells are simply rectangles. Such strategy of mesh-adaptation
is called the “moving mesh strategy.” The opposite is a strategy
where the cell-size is restricted to some maximum value and
where cells are added. Such strategy is called “the fixed mesh
" strategy.” We always use a “moving mesh strategy,” except
where mentioned. For a detailed discussion of both strategies
and their consequences, we refer the reader to [15].

A. Example 1: Double Stub

We consider a transmission line with two parallel stubs on an
alumina substrate (¢, = 9.6, thickness 0.635 mm) (see Fig. 3).
The stubs have the same length L and change simultaneously.
The width W of the transmission line and stubs is 0.635 mm.
We vary the length L from 0.3175 to 3.4925 mm in steps
of 0.3175 mm. The operating frequency is 10.0 GHz and the
electrical wavelength in the substrate is 11.7 mm. There are
two surfaces of which the shape is modified. The different
velocity vectors are defined in terms of the same geometrical

parameter L as
_ y—WH _
VUstubup — 7 Uy

for the first stub and

(49)

VUstubdown = %ﬂy (50)

for the second stub. On Fig. 3 the meshed geometry and
all relevant geometrical data are depicted for three situations
during the parameter sweep. The simulated results under
the form of the real and imaginary part of the transmission
coefficient S as a function of -L for a frequency of 10 GHz
are shown in Fig. 4. The correspondence between the finite
difference estimate S5°P and its integral equation counterpart
SIED s determined by taking the relative error of the real
and imaginary part according to (48). The results are shown
in Fig. 5. The maximum relative error is 1.0% both for the
imaginary and real part, which is a very good agreement. A
detailed comparison of the CPU-time in seconds, needed for
the calculation of S-parameters for one frequency point with
geometrical derivatives and the calculation without is made
in Table 1. The total time is subdivided in the calculation
of the quadruple integrals, the calculation of all impedances,
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Fig. 4. Real and imaginary part of the transmission coefficient and of the
geometrical derivative of the transmission coefficient at 10 GHz for the double
stub case.

the assembling and solution of the impedance matrix [Z;;],
assembling and solution for the geometrical derivatives of the
surface currents and the characterization of the port lines. The
time needed for the quadruple integrals triples as compared to
the calculation without derivatives because different types of
quadruple integrals must be calculated. The time for solving
[Z;;] also doubles because a LU-decomposition is performed
instead of a symmetric Gauss-elimination method. The time for
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TABLE 1
DETAILED COMPARISON OF THE CPU-TIME IN SECONDS BETWEEN CALCULATION
OF S-PARAMETERS WITH GEOMETRICAL DERIVATIVES AND WITHOUT

with | without
Calculation of Integrals 60 20
Calculation of impedances 10 5
Assemble/Solve Z;; 6 3
Assemble/Solve W; 0 -
Portlines 6 3
Total time (1 frequency) 32 31
Total time (3 frequencies) | 138 61

assembling and solving the [W;;] is, as predicted, negligible.
It must be pointed out that this comparison is a worst case
comparison: as more frequency points are needed and more
geometrical parameters are varied, the calculation time for
the case “with” will decrease more as compared to the case
“without” (see the last entry in Table I).

B. Example 2: Floating Line Resonator

In [19] a floating line resonator is investigated: two trans-
mission lines are separated by a gap and a small patch. The
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Fig. 6. Geometry and meshing of the floating line resonator example.
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at different frequencies. Resonance occurs at L = 3.64 mm for 14.90 GHz.

circuit lies on substrate with ¢, = 8.875 and a thickness
of 0.635 mm. At low frequencies this structure can already
radiate a substantial part of the injected power. The geometry
and mesh of the structure are depicted in Fig. 6 where all
dimensions are given in mm. The width of the transmission
lines is 0.508 mm. The-length L of the resonator patch is
varied from 2.90 mm to 3.70 mm with a step size of 0.01
mm. We consider three frequencies 14.20, 14.55, and 14.90
GHz. On Fig. 7 the amplitude of the reflection coefficient S11
and the radiated power are shown as a function of the length
L for different frequencies. A resonance occurs for L = 3.635
mm at a frequency of 14.90 GHz where 45% of the delivered
power is radiated. The maximum relative error of real and
imaginary part for this case was 0.08%. The availibility of the
geometrical derivative allows us to calculate some sensitivity
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measures, for example the relative sensitivity of the radiated
power with respect to L is defined as

L _ dPra_d L

Pas = 4L P (51
where . '
dPraq dS11 o« dS21 o«
F i 2Re[ ¥i7 511} 2Re[ L Syl (52)

This sensitivity measure is shown in Fig. 8 for the executed
parameter sweep.

~ C. Example 3: Five Turn Meander Line

As a last example we consider a meander line with five
full turns and arms of equal length L. The meander line lies
on a GaAs substrate (¢, = 12.85, thickness 100 pm) and
the width of the line is 75 pm. The parameter L is swept
from 25 pm until 650 um with a step size of 2.5 ym for a
frequency of 38.0 GHz. The geometry and the meshing are
shown in Fig. 9. The velocity vector is chosen in much the
same way as in the double stub case. To give an idea, a
vector plot of the velocity vector is presented in Fig. 10. At
each turn the velocity equals one, while at the center of the
structure, the vector is set to zero. Fig. 11 shows the real part
and the derivative of the real part of S;; with respect to
L. On this figure both the IED and FDD are displayed but
no difference is visible. Similar results are found for the
imaginary part. As the real part of S;; possesses a large
number of extrema, we have displayed the absolute error
between the real part of the IED and the FDD in Fig. 12.
The absolute error is sufficiently small (maximum deviation
is 300, total variation of the curve in Fig. 11 is 40000).
This result was obtained with a moving mesh strategy: the
cell dimension is proportionally adapted with the length.
We also performed the same parameter sweep with a fixed
mesh strategy. In that case, the mesh generator decides
autonomously on the basis of the electrical wavelength at the
highest frequency if cells should be added or not. At some
values of L, cells will be added. On Fig. 13 the absolute
error between the real part of the IED and the FDD is
shown for the calculation based on the fixed mesh strategy.
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Fig. 9. Geometry of the five turn meander line example.
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Fig. 10. Velocity vector field for the five turn meander line example.

11)

Relatively large jumps occur in this absolute error which
come from the FDD. These jumps coincide with an increase
in the number of celis. For example, the first jump in the
error curve comes from a change in the number of cells from
44 (o 54, the second from a change from 54 to 64, and so on.
These discontinuities are due to the fact that two S-pararneters,
simulated with different discretizations are subtracted from
cach other. Remark that even with a four-point formula for the
finite difference estimate, these jumps are relatively large: near
L = 650 pm the real part is about —12000 where the FDD
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predicts a value of —13000 or a deviation with nearly 10%.
Remark also that for this structure consisting of rectangular

regions it could be fairly simple to predict these increases
in number of cells but for an arbitrary shaped circuit this
would be nearly impossible. The IED however always shows
a smooth continuous behavior. In this way the IED is superior
to a finite difference estimate.

IX. CONCLUSION

The underlying principles and the derivation of a new
integral equation for the total derivative of the surface current
with respect to a geometrical parameter were presented. By
expanding the unknown total derivative of the current over
the same set of basis and test functions as the current, a
numerically efficient computation of the geometrical deriva-
tive becomes possible as a byproduct of the electromagnetic
simulation. An extension of the calibration and deembedding
scheme also allows to calculate the S-parameters with respect
to a geometrical parameter. Only one meshing of the structure
must be performed. Calculation of the matrix elements, filling,
and inversion of the impedance matrix is performed once.
The impedance matrix can be re-used for each geometrical
parameter and each right-hand side only needs N? compu-
tations if NV is the number of unknowns. Port lines can be
re-used during simulation. The approach treats all possible
geometrical parameters in the plane of the circuit in a uniform
way. Through the examples we saw that the integral equation
calculated derivatives (IED) coincides well with their finite
difference estimates (FDD). Moreover this IED is superior
to the FDD if different grids are used for the perturbed
geometries. In that case the FDD often exhibits nonphysical
discontinuities.

APPENDIX
DERIVATION OF AN INTEGRAL EQUATION FOR THE
GEOMETRICAL DERIVATIVE OF THE CURRENT

A. Vector Identities
We define a tensor as in [20]
oa 1 oa i@ oa
T S -
Oz Yoy "0z
= Vagiiy + Vayiy + Va,i,.

Va = i,
(53)
We formulate two vector identities in a suitable form. The first k

one concerns the gradient of the scalar product of two vector
fields

V xb)+(a-V)b ;
(Vxa)+(b-Va. (54)
This identity (54) can be rewritten with tensor notations as

V(a-b) = (Va) b+ (Vb)-a (55)

where the brackets cannot be omitted. By term wise identifi-
cation of (54) and (55), one gets

(Vb)-a=(a-V)b+ax (Vxb) (56)
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and we will use the following alternative form of the identity
(54)

V(a-b)=(Va)-b+(a-V)b+ax (V xb). (57

For the second vector identity, we start from

BT -

Vx(axb)=a(V-b)— a)+(b-V)a—(a-V)b. (58)

Or equivalently

(@-V)b=a(V-b)—b(V-a)+(b-V)a—V x (axb). (59)

Taking the divergence of both sides of (59), one gets
AV [(@-

V)b =a-V(V-b)~b-V(V-a)+V-[(b-V)a]. (60)
B. The Flux Transport Theorem for Vector Fields

Given a vector field F and let £ be the flux vector defined
by

E = / Fds (61)
Se
where the surface S¢ depends on the parameter &, then the the
total variation of F with respect to the parameter £ is given by
oF - OF
— +(U-V)E= —+V-
e T V) T (v

where ¥ =: dF/d€.

FydS  (62)

C. Derivation of a New Integral Equation for the
Geometrical Derivative of the Surface Current

We start from the well-known MPIE. The scattered electrical
field E°(r) is written here as a sum of two contributions

Ee(7) = —E*(F)
= BA(r) - B¥ (1)
= E4(r) — V¢V (r) (63)
where the two parts are given by
BAG) = [ GG )T )as'
. (64)

GY (7 | #)p(7')dS’
Se

¢V (7) =

Deriving both sides with respect to the parameter &, gives

8E;g( )_}_ (—— )ElnC( )
e PR LA C I VR A
OEA(F) V() e
D 460 - v D yvet )

(65)

where v = di/d€ = dx/d€u, + dy/dEu,. Using the notations
p = p(¥) = V' J(#), J = J(#'), introducing (64) in (65)

and using the flux Theorem (62), we get
dEme(F)
213
=/ [0 V'GA(r | 7))+ v VGA(r | )
g
GA(r | )T
+GA(F|7) {%‘2 +(v- V)J’] ds’

+ (7 V)E™(F)
+ V' 9'G

—v{/ VG (7| +V VGV (r | )
Se
V= | = op' S /
+ GV (7| 7) -é—g—l-v -V'p'|dS

e vw{ /S @ F’)p’dS’}.

The last term can be rearranged by using the identity (57)
with @ = 9 and b = VGV (7 | #)

(66)

V(@ VGV (7| 7))

= (V2) - VGY(F|7)+ (@ - V)VGY (7| 7) (67)

and this leads to

OE™(r)

= V) E(7)

+ (v

[ - V'GAF | ) -5 V'GAF | 7)) T
Se

7/
+ VT GAF | )T + GAF | ) P—J + (v~ ?)J_’] ds’

9
o

VGV (7|7 —5-V'GY(F|7)p

+ v/ A/ V(— | f’)pl + GV(’f | 77/)
3 —/ / N
[8—£+'v -V'p ]dS}-i—(Vv)

- v{ GV (7 | f’)p’dS’} (68)
Se

where we used the fact that VGV (7 | #) = —V'GV (7 | #).
Finally we rewrite the (68) as

8EinC(F> = 7\ frinc( =
*““‘55— + (T V)E(F)
= [ V1@ - octr
+ GA(F | ) [%—? + (v - V)J’] ds’

_ v{ s V'@ -9)GY (7| 7))y
rereifv-eil)

+ (Vo) - V{ GY (7| 7)p' dS'} (69)
Se
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The term (v - V')p’ is fully rewritten as o' - V/(V’- J"). Using
the vector identity (60) with @ = ¥’ and b = J', one gets

@/ . [(17/ . ?/)j/] — ’17/ . v/(v/ A ]"/) _ j/ .
' (70)

This means that

a7/
ap/aé- + (‘El . v/)p/ — ?/ . Qg‘g_ + v/ . [(@/ R @VI)J/]
+J VIV ) =V (T VY

Using this result (69) is rewritten as
OE™e(7)
9

= [ V(@ - 0)GNF | )T
Se

+ (7 - V)E™(F)

+ GAF | 7) [86_]5’ + (v - @’)J’} ds’
- ?’{ / V@ - 0)GY(r | VT
J s

+GY(r | PV [aa—]fl + (- ?’)J’}
+GY(F | )T VIV ) = GV (F | 7V
T v'mds'}

+ (Vo) - V{ GY(F |7V J’ds’}. (72)
Se
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