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A New Method for Obtaining the Shape

Sensitivities of Planar Microstrip

Structures by a Full-Wave Analysis
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Abstract-— We present the principles and the derivation of

a new mixed potentiat integral equation for the derivative of
the surface current with respect to a geometrical parameter
for planar microstrip structures embedded in a multilayered
substrate. This new integral equation is solved together with
the original integral equation with the method of moments by

using the same set of test and basis functions. Expressions for the

matrix elements as a function of the basis and test functions are

given. From the geometrical derivatives of the surface currents,

geometrical derivatives of the S-parameters are obtained. In the

examples a geometrical parameter is swept over some interval,
and the derivative, obtained with the new integral equation, is

compared with estimates calculated by using finite differences.
Very good agreement is found between these estimates.

L INTRODUCTION

c ONSIDERABLE research has been devoted to the full-

wave analysis of planar microstrip structures as can be

seen from the numerous publications [1 ]–[4] on this topic.

Such a rigorous analysis is very often based on an integral

equation formulation, typically solved with the method of

moments (MoM). In this paper, we apply the MoM to the

mixed potential integral equation (MPIE) formulation of the

problem. This problem formulation and solution method is

the most efficient for arbitrarily shaped planar geometries

embedded in a laterally infinitely extending, stratified medium

because only the conducting surfaces are meshed up, From

the surface currents on the microstrip, equivalent scattering

parameters of the structure are derived.

Recently attention shifted to the inverse problem: the geo-

metrical design of components based on a full-wave electro-

magnetic simulation [5], [6]. This design can be automated

by the application of powerful optimization methods. Such an

optimization, for instance, has already been applied for planar

devices with the FEM as analysis method [7].
Efficient local optimization techniques rely heavily on the

gradient of the objective function [8]. In a general full-

wave electromagnetic problem these first derivatives with

respect to the geometrical parameters are not readily available.

Therefore, one usually resorts to the numerical but inefficient

method of taking finite differences. For a circuit with Al
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geometrical design parameters, a forward or backward finite

difference estimate requires at least ill+ 1 full-wave analyses

of the entire problem. Other methods for obtaining this gra-

dient information consist in fitting or interpolating quadratic

polynomials to the goal or error function. This involves several

repeated analyses of slightly perturbed problems. In [9], e.g.,

an efficient interpolation method is described for interpolating

and approximating the error surface. Gradient information

of the objective function is reconstructed by taking partial

derivatives of this interpolant, however with a certain loss

of accuracy. The approximation of highly nonlinear response

curves stirred also considerable interest in neural networks

as function approximators [10], [11]. Other techniques [12]

exploit the decrease in simulation time when a coarse grid

or mesh is used to simulate the circuit. All these techniques

have their own merit, but they basically work at the outside

of the electromagnetic simulator and are in fact applicable to

whatever computationally intensive simulation.

A more problem-oriented approach is described in [13] and

[14] for the full-wave optimization of waveguide filters. The

key assumption in this work is that simple, analytically known,

expressions exist for the admittance matrix of subsections of

the waveguide as a function of the geometrical parameters. For

an integral equation based full-wave analysis of even simple

microstrip discontinuities, this assumption breaks down: no

simple analytical expressions exist for the impedance matrix

elements. Another important difference is that in integral

equation techniques the geometry is meshed, whereas in [13]

no meshing of the geometry is needed.

The present paper presents the principles as well as a

method for calculating the derivative of the S-parameter with

respect to an arbitrary geometrical parameter using the MPIE

as a full-wave analysis method, This derivative or shape

sensitivity is obtained as a byproduct of the electromagnetic

simulation. Through the examples, it will be demonstrated that

this derivative is superior with respect to a finite difference

estimate. The method has been shown to be valid in the

electrostatic case of planar structures [15], [16] and this work is

an extension to the full-wave analysis of planar structures. We

confine ourselves to the case of microstrip structures analysed
with a MPIE but the principles proposed here are directly

applicable to, e.g., the analysis of the same structure with an

electrical field integral equation (EFIE) or extendible to the

analysis of a hybrid structure with microstrip and slot type

discontinuities.
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Frg, 1, Example geometry of a planar mlcrostrip structure embedded m a
multilayered substrate,

II. DERIVATION OF AN INTEGRAL EQUATION FOR THE

TOTAL GEOMETRICAL DERIVATIVE OF THE CURRENT

A. Geomet~ and Geomet~iccd Parameters of the Problem

The general geometry of a planar microstrip circuit, em-

bedded in a multilayered substrate is depicted in Fig. 1. The

substrate consists of an arbritra-y number of layers, stacked

in the ~-direction. The layers extend to infinity in ~- and ;y-

direction. A metallic ground plane and/or top plane can be

present. The microstrip circuit consists of thin metallization

surfaces of arbitrary shape. The thickness of the metalliza-

tion is assumed to be negligible in comparison with the

layer thicknesses. Losses are modeled by taking a surface

impedance of the conductors into consideration. Different

types of geometrical parameters appear in this multilayered

planar microstrip structure: thicknesses of the substrate layers

(such as hl and hz), distances between metallization surfaces

(e.g. all ) and geometrical parameters pertaining to the surface

itself like width or length (e.g.. L1, L2 or MJl ). We confine

ourselves to the last two types of geometrical parameters.

Derivatives with respect to layer thicknesses will be the subject

of a forthcoming paper.

B. Integral Equations

The relation between the incident tangential electrical field

and the surface current on the microstrip is given by the

well-known MPIE [3], [4], [17]

Ein’(F) = 2.,7(F)+
I

G44(r I F).~(F’)dS
se

of the zero boundary condition for the total electrical field on

the conducting surface S<. For simplicity, we assume that &

represents a single geometrical parameter which modifies the

shape of the surface S< in the plane of the surface. Extension to

multiple geometrical parameters is straightforward. The total

derivative of the surface current with respect to the geometrical

parameter < is given by

with z = dF/d~. We call 6 a velocity vector. This vector

always lies in the plane of the circtnt (i.e., a plane parallel

to the (z, y) plane) and describes how an arbitrary position

coordinate of the metallization surface changes with ~. The

total derivative consists of two parts: the first part describes

the dependence of the surface current on the geometrical

parameter itself, and the second part describes the change in

current as a consequence of the change in position coordinates.

The total derivative of the surface current with respect to the

geometrical parameter satisfies the following integral equation

This new integral equation is obtained by applying the flux-

transport theorem on the MPIE (1). For a full derivation of

[’ 1
this integral equation, the reader is referred to Appendix A.

— ~ / GV(Y I r’)~’ ~(#)dS (1) We denote the explicit dependence of the velocity and surface

the tangential component of the

incident electrical field

the unknown surface current

distribution

the electrical or magnetic Green’s

function kernel

the surt%ce impedance of the

conductor.

This integral equation follows directly from the representa-

tion of the electrical field as a function of a magnetic vector

potential and an electrical scalar potential and the application

current on the excitation position vector with the following
notations: U’ = u(r’ ) and .7 = .1(r’). The first three terms on

the right-hand side of (3) are similar to the right-hand side of

(1) but with the unknown .~~ (2) replacing J’, the next two

terms are similar to the second and third term in (1) but in

these terms a different “modified” kernel appears of the form

~’ [(d – V) Gt”(T I F’)] or ~’ [(d – v) G-*(F I F’)]. The last

three terms stem from the integro-differential character of (1).

We will use the following notations to denote the modified

kernels
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III. SOLUTION OF THE INTEGRAL EQUATIONS

WITH THE METHOD OF MOMENTS

The two integral (1) and (3) will be solved with the classical

method of moments. Therefore, the surface current is expanded

in a sum of N basis functions, denoted by Bj (F’)

and after testing with N test functions T,(T) the

system of linear equations from (1) is obtained

(5)

following

(6)

-/,sTi(’’)’vls
GV(F I F’)V’ . ~j(#)dS’dS (7)

K=
/

T,(F)~J?w’(iyis. (8)
s

For simplicity, we will omit the subscript ( of SC from now

on. The solution of the surface current can be found by solving

the (6). To solve the second integral equation, we expand the

unknown ,~~ over the same set of basis functions

N (- -,
.7; =~IJBj(r) (9)

j=l

and substitute the solution of (1), i.e., the approximate surface

current distribution (5) in (3). After testing with the same test

functions, we again obtain a system of linear equations in the

unknowns I;

where

“’=@’)”l
RA(F I F’)~j(T’)dS’dS

The same impedance matrix ZZJ stands before the un-

knowns I;, which is direct consequence of using the same

set of basis functions and test functions. If we solve for

the surface currents by a LU-decomposition of the system

matrix [Z,j ] then the solution of the geometrical derivative

1~ only needs N2 additional computations where N is the

number of unknowns. No assumptions have yet been made

concerning the nature of basis and test functions: the method

can be applied with subsectional or full domain basis funtions,

one can choose between the Galerkin solution or a scheme

using rooftop functions in conjunction with pointmatching.

The only restriction for a computationally efficient method

is that the same set of basis and test functions is used for both

integral equations. The introduction of the numerical method

of moment solution of the surface current implicates a certain

error for the geometrical derivative. For a discussion of this

approximation and its consequences, we refer the reader to

[15].

IV. DERIVATION OF THE MATRIX ELEMENTS

In this section we derive simple expressions for the Z-

and W-matrix elements ((7) and (11 )) in terms of basis and

test functions by eliminating the gradient vectors before the

integral sign as it is difficult to handle these numerically.

We assume that the geometry is meshed up in a mesh of

rectangular or triangular cells and that the test and basis

functions used are subsectional.

A. Derivation of the Z-Matrix Elements

By using Green’s theorem, the elements of the Z-matrix

can be rewritten as

‘P”T’(F)LGv(r I #)V’ . Ej(#)dS’dS (13)

where ii. is the outside oriented normal unit vector along the

boundary OS of the surface S. The third term, i.e., the integral

over 85’, disappears because the normal component of the

surface current is continuous across two adjacent cells. At

the boundary of the surface S, the normal component of the

current is zero. Hence, the impedance matrix elements reduce

to

‘Pw GV(T I F’)V’ , ~j(#)dS’dS. (14)

The matrix elements Zi3 also appear before the unknowns 1:
in (10). The expression for the matrix elements reduces to (14)

if we force the normal component of the total derivative of

the surface current to be continuous across two adjacent cells.

The normal component of the total derivative of the surface

current at the boundary of S is usually zero. This can be seen

as follows: we denote the surface current at the boundary i3St
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Fig. 2. Condltlon attheboundary of thesurface durlngparameter variation.

by ~(T, <). Then, J(F+AF,&+A~) is the surface current at

the boundary i3SC+At fora perturbed value of <. Remark that

when perturbing ~ the position v on the boundary changes to

F + AT. If we consider the normal component of the surface

current. one can state that for every At; (see Fig. 2)

j(r+ AT,<+ A<) . ‘ii(T+ AT, < + AC) – .7(F><) ‘ n(r, <)

because before and after shape variation the normal component

of the surface current is zero. If the unit normal vector

stays constant during the parameter variation, i.e. fi(~, <) =

fi(~ + AF, < + A&) for all A<, then

or when taking the limit

Hence one can conclude that in ( 10) the expression for the Z,t

reduces to ( 14), on the condition that the normal unit vector

stays the same during parameter variation. This will be the

case taking into consideration the assumptions which will be

made in the following Section IV-B.

B. Deri~wtiorl of the W-Matrix Elements

Following the same method. we wil 1 try to eliminate the

gradient vectors before the integral sign in (11). To simplify

(11 ), we make the following basic assumption: the velocity

vector is a plecewise continuous vector field with support on
S. In each part of S (this could be in each cell), the velocity

vector can be written in the standard fimm

where iiz and Uy are the unit vectors in x- and y-direction.

Parts of the surface S can only undergo linear transforma-

tions: expansion. contraction or translation, in other words all

deformations where the congruency with the original surface is

maintained are admissible. Non-linear deformations however

can not be handled through this standard form. This basic

assumption allows us to considerably simplify the integral

(3) and the matrix elements in (11) without too severely

restricting the generality of possible modifications of the shape

of the surface. As a consequence of ( 18), the normal unit

vector fi(~, f) will also remain constant during deformation,

automatically leading to (17).

As a direct consequence of this basic assumption, the term

in ( 11) with V’ (V’ v’) disappears because this factor is zero

on the entire surface.

The remaining terms of the W-matrix elements

and

will be handled separately. By applying Green’s theorem to

( 19), we get

BJ(F’)ds’ia

The contour integrals are taken along the boundary of the

surface S. Because the normal component of the surface

currents lJ are continuous across two cell boundaries, only

two terms of ( 19) remain

We can rewrite the term V’ ~[( B~ (T’ ) . V’)i?] by substituting

the canonical form for the velocity ‘O(18)

We also substitute (18) into (20) and if we denote the “poten-
tial” due to a single basis function Bj (7’) by 4J (7)

then

(25)
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Or if we define a “modified” test function as

M@i. GV(P
as s

The second part of (27) is m

Q . [( T~(F) . V)ti]

i. A

then (28) is equal to

F’)V’ . Ej (#)dS’?idl. (30)

thing else than the expansion of

Summarizing, we get the following result for the

elements by summation of all contributions

“4(’)”L
F(F I F’pj(iqds’czs

P .

W-matrix

-PT’(F)LGV(’’F’)V’

V. CALCULATION OF THE MATRIX ELEMENTS

A. Calculation of the Locally Modified Green’s Function

The original integral kernels Gv (F [ F) and GA(F I P’) are

only a function of p = [F – FI, The kernels Rv (P I #) and

R-4 (F I F’) are functions of F and F’. The analytical expression

as a function of p of the original potential kernels (Gv (T I F’)

and GA (T I T’)) for an arbitrarily multilayered medium is not

known. The kernels are expanded in a Laurent series of p

over some p-interval as in [4]

(33)

&=–l

with X = A or V. The gradient vector of G-Y(p) with respect

to the excitation coordinates is given by

“Gy(p)=(’’-”)rE’34)
Taking into account the form of the velocity vector, we can

write the locally perturbed Green’s function kernels as

=(4 +P;) ~ +Pk
k=–1

+ {cl&z’(z’ – z) + ,gy’(s’ – s) – Cw(z’ – $)

- Pzy($’ -z)+ (’y: - ‘y.)(%’ - z)

+ C@’(y’ – y) + p;y’(y’ – y)

– ~YY(Y’ – Y) – PYY(Y’ – Y)
NP.W

+ (7; – %)(Y’ – Y)} ~ kc;pk-2 (35)

k=–1

where the coefficients withlwithout prime belong to excita-

tionlobservation cell. For each part of the surface where the

excitation and observation velocity coincide (U = d), (35)

simplifies to

= (a;+ ,8;) ‘~w(--p’

k=–]

+ {CL:(’+ – 3)2+ (p: + Clj)(y’– Y)(Z’ – ~)
N POW

+ ,L’?;(y’– y)’} ~ kc:pk-2.
k=–1

(36)

From (36) we observe that if k equals – 1, the singularity of the

kernel is of the same order as in the original integral equation,

namely a p– 1 term. As a consequence, weak singular integrals

of the same type as in the Z-matrix elements appear during

calculation of the W-matrix elements.



254 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 44. NO. ?, FEBRUARY 1996

B. Calculation of the Matri.~ Elements

For the basis functions and test functions, the classical

rooftop functions are used. This corresponds with the Galerkin

solution method. Basically the calculation of the matrix el-

ements reduces to the integration of a quadruple integral

over excitation and observation cell of a power of p and a

polynomial function in x, z’. g or y’, The integration method

used is the same as in [4].

VI. GEOMETRICAL DERIVATIVE OF THE CURRENT

If no external incident field is present, then the systems of

linear equations reduce to

O = Z,lIJ (,37)

and

O = Z,j 1; + W,j IJ (38)

In order to calculate circuit parameters, like the Y-Z or S-

parameters, port lines are added to the planar structure. At the

end of port line, a source excites the structure. If we group the

current variables corresponding with the end of the port in the

vector lp and the remaining variables (circuit + rest of port

line) in the vector 1s we can rewrite (37) as

(39)

with solution

Is = – [Zss’-l [zspIp]. (40)

For the system (38) an analogous reasoning leads to

Because the source is independent of the geometry, 1$ van-

ishes and the solution for 12 becomes

The same inverse matrix is used as in the previous system,

which means that only Nz additional computations are needed

in order to solve for the derivative with respect to a geometrical

parameter.

VII. GEOMETRICAL DERIVATIVE OF THE S-PARAMETERS

The surface density currents at the port or feed lines give

rise to the longitudinal currents at each port. Likewise the

geometrical derivatives of the surface currents can be easily

related to the geometrical derivative of the longitudinal current

at the port line. Voltages at each port line are defined by using a

power-current definition [18] in the following way:

power PP,q, injected or reflected at port p, due to
excitation at port q (other ports open) is defined as

/
Ppq = –; Ep.q J;,qds

s,

the cross

a current

(43)

where Ep,q is the tangential electrical field at port p, JP,~ the

corresponding surface current and SP the port region. Using a

circuit definition, voltages at each port are calculated as

~, 2Pp,q
P.q = T. (44)

li, q

where I;,q is the longitudinal current at port p. Because the

applied source current distribution Jp)q is independent of the

geometrical parameters, the derivative of the cross power is

given by

dPpq _ 1 /[~––~~;Ep,q+(nT’)Ep,q1~;,qdS. (45)
P

To simplify the discussion, we made the assumption that the

port region SP is independent of the geometrical parameter

<. This means that derivatives with respect to the width of

the port lines cannot be calculated with the method described

above. The derivative of the cross power can also be expressed

as a function of the calculated 16 and the matrix elements W,j.

Substituting (45) in the derivative of the circuit definition (44),

derivatives of the port voltages with respect to the geometrical

parameters are obtained as

(46)

From the currents, the geometrical derivatives of the currents,

the voltages and the geometrical derivatives of the voltages.

the S-parameters and its geometrical derivatives are easily

obtained.

VIII. NUMERICAL EXAMPLES

The previous theory has been implemented for structures

consisting of rectangular cells where the cell dimension can

be of different size. We emphasize however that the above

theory is not restricted to this type of mesh but could also

be implemented for a mixed mesh of rectangles and triangles,

however with more numerical efforts.

Some numerical examples will be given where a single

geometrical parameter is varied over some interval. As a

reference we will calculate an estimate of the derivative of

the S-parameter obtained by taking finite differences with a

simple four point formula

f’(z) = ~(x - 2h) - 8.f(z -h) +8~(z+h) - f(z+2fi)

1211

+ 0(h4). (47)

To this end the integral (3) must be solved four times, each

time for a different St surface. This estimate, abbreviated

FDD (finite difference derivative) will be sufficient] y accurate

if the step size h is kept small. The derivative, obtained by

solving the integral (3) is called the IED (integral equation

derivative). A comparison between these two estimates is made

by considering the following relative error measure

1P(*),,J - W*)FDDII
E,,l =

IWWDII
(48)
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where F[.] stands for the real part, the imaginary part, the

phase or the absolute value and where Sij k one of the S-

parameters. A large error cart indicate an incorrect IED or a

less accurate FDD. The accuracy of the FDD can be arbitrarily

increased in theory by decreasing the step size, in practice by

using a higher-order formula.

A important issue is still left untouched: if a geometrical

parameter which relates to the surface itself (length, width,

but not the distance between two surfaces) is changed then

the meshing of the structure must be adapted. The manner in

which this is performed is arbitrary and must be specified by

the user: cells can be added in the meshing, some cells can

be expanded or reduced or a combination of both approaches

can lbe used. In the examples presented below, the mesh of

the entire structure is changed proportionally with the change

of the geometrical parameter. This can be done because all

cells are simply rectangles. Such strategy of mesh-adaptation

is cal~ledthe “moving mesh strategy.” The opposite is a strategy

where the cell-size is restricted to some maximum value and

where cells are added. Such strategy is called “the fixed mesh

strategy.” We always use a “moving mesh strategy,” except

where mentioned. For a detailed discussion of both strategies

and their consequences, we refer the reader to [15].

A. Example 1: Double Stub

We consider a transmission line with two parallel stubs on an

alumina substrate (G. = 9.6, thickness 0.635 mm) (see Fig. 3).

The stubs have the same length L and change simultaneously.

The width W of the transmission line and stubs is 0,635 mm.

We vary the length L from 0.3175 to 3.4925 mm in steps

of 0,3175 mm. The operating frequency is 10.0 GHz and the

electrical wavelength in the substrate is 11.7 mm. There are

two surfaces of which the shape is modified. The different

velocity vectors are deftned in terms of the same geometrical

parameter L as

()y–w
!&ubup = — ‘l@

L
(49)

for the first stub and

b

for the second stub. On Fig. 3 the meshed geometry and

all relevant geometrical data are depicted for three situations

during the parameter sweep. The simulated results under

the form of the real and imaginary part of the transmission

coefficient S21 as a function of L for a frequency of 10 GHz

are shown in Fig. 4. The correspondence between the finite

difference estimate S~~D and its integral equation counterpart

S~~]> is determined by taking the relative error of the real

and imaginary part according to (48). The results are shown

in Fig. 5. The maximum relative error is 1.O% both for the

imaginary and real part, which is a very good agreement. A

detailed comparison of the CPU-time in seconds, needed for

the calculation of S-parameters for one frequency point with

geometrical derivatives and the calculation without is made

in Table I. The total time is subdivided in the calculation

of the quadruple integrals, the calculation of all impedances,

5.0800
RI L=l.9050

Geometry and meshing of the double stub example.

317.5E-06 L 3.4925 E-03H

,__..”..”_J._.

-—.

317.5E-06 L 3 .4925E-03 C

Rest and imaginary part of the transmission coefficient and of the

geometrical derivative of the transmission coefficient at 10 GHz for the double
stub case.

the assembling and solution of the impedance matrix (Ziil,

assembling and solution for the geometrical derivatives of the
surface currents and the characterization of the port lines. The

time needed for the quadruple integrals triples as compared to

the calculation without derivatives because different types of

quadruple integrals must be calculated. The time for solving

[Z~j] also doubles because a LU-decomposition is performed
instead of a symmetric Gauss-elimination method. The time for
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317.5E-06 L 3.4925E-03

—.

317.5E-06 L 3 .4925E-03

Fig. 5. Relative error between the integral equation derivative and finite
difference derivative of the real and imaginary part of the transmission
coefficient at 10 GHz for the double stub case.

TABLE I
DETAILED COMPARISONOF THE CPU-TIME IN SECONDSBETWEEN CALCULATION

OF S-PARAMETERS WITH GEOMETRICAL DERIVATIVESAND WITHOUT

Iwithl without

calculation of’ Integrals 60 Q()
Calculation OF irnperlances 10 5

.Assemble/Solve 2;; 6 3

Portlines’ “ 61 3

Total timefl freauencv) s~ I 311
Total time (3 f’re{uenc&)

1
138 I 61

assembling and solving the [W;j] is, as predicted, negligible.

It must be pointed out that this comparison is a worst case

comparison: as more frequency points are needed and more

geometrical parameters are varied, the calculation time for

the case “with” will decrease more as compared to the case
“without” (see the last entry in Table I).

B. Example 2: Floating Line Resonator

In [19] a floating line resonator is investigated: two trans-

mission lines are separated by a gap and a small patch. The

Fig. 6. Geometry and meshing of the floating line resonator example.

2.9E-03 L 3.7 E-03A

2.9E-03 L 3.7E-03 A

Fig. 7. Reflection coefficient and radiated power of the floating line resonator
at different frequencies. Resonance occurs at L = 3.64 mm for 14.90 GHz.

circuit lies on substrate with G = 8.875 and a thickness

of 0.635 mm. At low frequencies this structure can already

radiate a substantial part of the injected power. The geometry

and mesh of the structure are depicted in Fig. 6 where all

dimensions are given in mm. The width of the transmission

lines is 0.508 mm. The length L of the resonator patch is

varied from 2.90 mm to 3.70 mm with a step size of 0.01

mm. We consider three frequencies 14.20, 14.55, and 14.90

GHz. On Fig. 7 the amplitude of the reflection coefficient Sll

and the radiated power are shown as a function of the length

L for different frequencies. A resonance occurs for L = 3.635

mm at a frequency of 14.90 GHz where 45$%0of the delivered

power is radiated. The maximum relative error of real and

imaginary part for this case was 0.08%. The availability of the

geometrical derivative allows us to calculate some sensitivity
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Fig. 8. Sensitivity of the radiated power as a function of the lengtfr L for

different frequencies (floating line resonator).

measures, for example the relative sensitivity of the radiated

power with respect to L is defined as

(51)
~= _ (iPrad L

where

i=~’eii%l -“e[~s”l’52)
This sensitivity measure is shown in Fig. 8 for the executed

parameter sweep.

C. Example 3: Five Turn Meander Line

As a last example we consider a meander line with five

full turns and arms of equal length L. The meander line lies

on a GaAs substrate (G = 12.85, thickness 100 ~m) and

the width of the line is 75 pm. The parameter L is swept

from 25 pm until 650 pm with a step size of 2.5 ~m for a

frequency of 38,0 GHz. The geometry and the meshing are

shown in Fig. 9. The velocity vector is chosen in much the

same way as in the double stub case. To give an idea, a

vector plot of the velocity vector is presented in Fig. 10. At

each turn the velocity equals one, while at the center of the

structure, the vector is set to zero. Fig. 11 shows the real part

and the derivative of the real part of S1l with respect to

L. On this figure both the IED and FDD are displayed but

no difference is visible. Similar results are found for the

imaginary part. As the real part of S11 possesses a large

number of extrema, we have displayed the absolute error

between the real part of the IED and the FDD in Fig. 12.

The absolute error is sufficiently small (maximum deviation

is 300, total variation of the curve in Fig. 11 is 40000).

This result was obtained with a moving mesh strategy: the

cell dimension is proportionally adapted with the length.

We also performed the same parameter sweep with a fixed
mesh strategy. In that case, the mesh generator decides

autonomously on the basis of the electrical wavelength at the

highest frequency if cells should be added or not. At some

values of L, cells will be added. On Fig. 13 the absolute

error between the real part of the IED and the FDD is

shown for the calculation based on the fixed mesh strategy.

225
L=25. O

——mL———

Iu

257

Fig. 9. Geometry of the five turn meander line example.
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Fig. 10. Velocity vector field for the five turn meander line example.

Relatively large jumps occur in this absolute error which

come from the FDD. These jumps coincide with an increase

in the number of cells. For example, the first jump in the

error curve comes from a change in the number of cells from
44 to 54, the second from a change from 54 to 64, and so on.

These discontinuities are due to the fact that two S-parameters,

simulated with different discretizations are subtracted from

each other. Remark that even with a four-point formula for the

finite difference estimate, these jumps are relatively large: near

L = 650 &m the real part is about –12 000 where the FDD
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25. OE-05 L 650. OE-05

Fig. 11. Real part of the reflection coefficient (moving mesh strategy).

25. OE-06 L 650. OE-06

Fig. 12. Absolute error between the integral equation derivative and the finite
difference derivative of the real part of the reflection coefficient with a moving
mesh strategy.

0
0

—

25. OE-06 L 650. OE-06

Fig. 13. Absolute error between the integral equation derivative and a finite
difference derivative of the real part of the reflection coefficient with a fixed

mesh strategy.

predicts a value of – 13000 or a deviation with nearly 10%.

Remark also that for this structure consisting of rectangular

regions it could be fairly simple to lpredict these increases

in number of cells but for an arbitrary shaped circuit this

would be nearly impossible. The IED however always shows

a smooth continuous behavior. In this way the IED is superior

to a finite difference estimate.

IX. CONCLUSION

The underlying principles and the derivation of a new

integral equation for the total derivative of the surface current

with respect to a geometrical parameter were presented. By

expanding the unknown total derivative of the current over

the same set of basis and test functions as the current, a

numerically efficient computation of the geometrical deriva-

tive becomes possible as a byproduct of the electromagnetic

simulation. An extension of the calibration and deembedding

scheme also allows to calculate the S-parameters with respect

to a geometrical parameter. Only one meshing of the structure

must be performed. Calculation of the matrix elements, filling,

and inversion of the impedance matrix is performed once.

The impedance matrix can be re-used for each geometrical

parameter and each right-hand side only needs N2 compu-

tations if N is the number of unknowns. Port lines can be

re-used during simulation. The approach treats all possible

geometrical parameters in the plane of the circuit in a uniform

way. Through the examples we saw that the integral equation

calculated derivatives (IED) coincides well with their finite

difference estimates (FDD). Moreover this IED is superior

to the FDD if different grids are used for the perturbed

geometries. In that case the FDD often exhibits nonphysical

discontinuities.

APPENDIX

DERIVATION OF AN INTEGRAL EQUATION FOR THE,

GEOMETRICAL DERIVATIVE OF THE CURRENT

A. Vector Identities

We define a tensor as in [20]

= Vazilz + Vayuy + TaZuZ. (53)

We formulate two vector identities in a suitable form. The first

one concerns the gradient of the scalar product of two vector

fields

v(ii. E)=iix(v x6)+ (ii. v)t
+Fx(vxa)+(b. v)a. (54)

This identity (54) can be rewritten with tensor notations as

v(u. @=(vtz). G+(vb), a (55)

where the brackets cannot be omitted. By term wise identifi-

cation of (54) and (55), one gets

(vG). d=(ti.9)6+tix(vx E) (56)
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and we will use the following alternative form of the identity and using the flux Theorem (62), we get

(54)

‘Einc(p) + (U , Q)~inc(T)

V(iZT)= (va). T+(iZ. v)b+ux(vx F), (57) 8<

Or equivalently

(u. v) T=. a(v. F)- F(P. ti)+(6. v)u-Px(ux G). (59)

Taking the divergence of both sides of (59), one gets

V.[(ti V) F]= UV(VT)-T~(~. @+V[(b. V)a]. (60)

B. The Flux Transport Theorem for Vector Fields - (ti Q)v
{/ }

G~’ (~ I #)p’dS’ . (66)
S(

Given a vector field F and let E be the flux vector defined

by The last term can be rearranged by using the identity (57)

/

with 6, = z and ~ = ~Gv(F I T’)

E= FdS (61)
s< V(V ~VGV(F I F’))

where the surface S6 depends on the parameter f, then the the
= (Vu). VGV(F I r’) + (U . V)VGV(T I F’) (67)

total variation of E with respect to the parameter& is given by
and this leads to

C. Derivation of a New Integral Equation for the

Geometrical Derivative of the Su@ace Current

We start from the well-known MPIE. The scattered electrical

field ES(F) is written here as a sum of two contributions
–v

{1
if . ~’Gv(F I F’)p’ – U . ~’G}’(F I #)p’

S(

~inc(o= -~’(3 + V’ .O’GV(T I #)p’ + Gv(r I P’)

= @(~) – jy(q

[-

x ap’

8( 1}+#.V’p’dS’ + (Vti)

= jjA(r) – v~v(r) (63)

v
{/

GV(T I #)p’dS’
where the two parts are given by }

(68)
SC

‘#)p(#) dS’

(64)

Deriving both sides with respect to the parameter ~, gives

where we used the fact that VGV (F I F’) = –~’Gv (F I F’).

Finally we rewrite the (68) as

–v {1~’ . [(/ – ti)Gv(F \ F’)]p’
se

[ 1}+Gv(r I F’) y + u’ . V’p’ dS’
6’[

where ~ = dfldi$ = dx/d<iiz + dy/d<iiY. Using the notations + (vu) . v
{/ }

Gv(r \ #)p’dS’ . (69)

p’ = p(fi’) = $7’. ~(~’), ~’ = ~(~’), introducing (64) in (65) se
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Theterm(!?. ~’)p’ is fully rewritten as O’. ~’(~’. )’Usingng

the vector identity (60) with c = U’ and 6 = ~’, one gets

v’ ~[(D’ ~T’)!7’] =0’ V’(T’ ?7’) -7’ V’(T’ ~u’)

+T’ [(7’ V’)u’]. (70)

This means that

— -, 8J’

‘P’a( + “u’ “ “)P’ = v “ 8<
— + ~’ “ [(~’ ‘ ~’)~’l

+ y ,~l(~f , ,fi/) -Q’ [(.7 T7’)ii].
(71)

Using this result (69 ) is rewritten as

[1]
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